
[Ganwani, 2(5): May, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1367-1371]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY
Aggregate Query Processing using Random walk approach in Dynamic

Environment
Vinod S. Gangwani*1, Prof. P. L. Ramteke2

*1Department of Computer Science & Engineering H.V.P.M’s COET, SGBAU, Amravati (MH), India
2Department of Information Technology H.V.P.M’s COET, SGBAU, Amravati (MH), India

Vinod.gangwani@gmail.com
Abstract

Peer-to-peer (P2P) network is increasingly becoming popular because it offers oppor¬tunities for real-time
communication, ad-hoc collaboration and information sharing in a large-scale distributed environment. Peer-to-peer
computing is defined as the sharing of computer resources and information through direct exchangeThe advantages
of the P2P systems are multi-dimensional; they improve scalability by enabling direct and real-time sharing of
services and information; enable knowledge sharing by aggregating information and resources from nodes that are
located on geographically distributed and potentially heterogeneous platforms; and, provide high availability by
eliminating the need for a single centralized component.

The problem of answering large scale, ad-hoc analysis queries – e.g., aggregation queries – on these
databases poses unique challenges. Exact solutions can be time consuming and difficult to implement given the
distributed and dynamic nature of peer-to-peer databases. In this paper we present novel sampling-based techniques
for approximate answering of ad-hoc aggregation queries in such databases. The data is distributed (usually in
uneven quantities) across many peers, within each peer the data is often highly correlated, and moreover, even
collecting a random sample of the peers is difficult to accomplish.

Keywords : Random Walk, Query Processing

Introduction
 Peer-to-Peer Databases: The peer-to-peer
network model is quickly becoming the preferred
medium for file sharing and distributing data over the
Internet. A peer-to peer (P2P) network consists of
numerous peer nodes that share data and resources
with other peers on an equal basis. Unlike traditional
client-server models, no central coordination exists in
a P2P system, thus there is no central point of failure.
P2P network are scalable, fault tolerant, and
dynamic, and nodes can join and depart the network
with ease. The most compelling applications on P2P
systems to date have been file sharing and retrieval.
For example, P2P systems such as Napster [25],
Gnutella [15], KaZaA [20] and Freenet [13] are
principally known for their file sharing capabilities,
e.g., the sharing of songs, music, and so on.
Furthermore, researchers have been interested in
extending sophisticated IR techniques such as
keyword search and relevance retrieval to P2P
databases.
Aggregation Queries:

In this paper, however, we consider a
problem on P2P systems that is different from the
typical search and retrieval applications. As P2P

systems mature beyond file sharing applications and
start getting deployed in increasingly sophisticated e-
business and scientific environments, the vast amount
of data within P2P databases pose a different
challenge that has not been adequately researched
thus far – that of how to answer aggregation queries
on such databases. Aggregation queries have the
potential of finding applications in decision support,
data analysis and data mining. For example, millions
of peers across the world may be cooperating on a
grand experiment in astronomy, and astronomers may
be interesting in asking decision support queries that
require the aggregation of vast amounts of data
covering thousands of peers. An aggregation query
such as the following may be introduced at any peer
(this peer is henceforth called the sink)
Aggregation Query :
SELECT Agg-Op(Col) FROM T WHERE selection-
condition

In the above query, the Agg-Op may be any
aggregation operator such as SUM, COUNT, AVG,
and so on; Col may be any numeric measure column
of T, or even an expression involving multiple
columns; and the selection condition decides which

[Ganwani, 2(5): May, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1367-1371]

tuples should be involved in the aggregation. While
our main focus is on the above standard SQL
aggregation operators.

Approximate Query Processing

Fortunately, it has been observed that in
most typical data analysis and data mining
applications, timeliness and interactivity are more
important considerations than accuracy - thus data
analysts are often willing to overlook small
inaccuracies in the answer provided the answer can
be obtained fast enough. This observation has been
the primary driving force behind recent development
of approximate query processing (AQP) techniques
for aggregation queries in traditional databases and
decision support systems [9, 3,6, 8, 1, 14, 5, 7, 23].
Numerous AQP techniques have been developed, the
most popular ones based on random sampling, where
a small random sample of the rows of the database is
drawn, the query is executed on this small sample,
and the results extrapolated to the whole database.
Goal of Paper: Approximating Aggregation
Queries in P2P Networks

Given an aggregation query and a desired
error bound at a sink peer, compute with “minimum
cost” an approximate answer to this query that
satisfied the error bound. The cost of query execution
in traditional databases is usually a straight forward
concept – it is either I/O cost or CPU cost, or a
combination of the two. In fact, most AQP
approaches simplify this concept even further, by just
trying to minimize the number of tuples in the
sample; thus making the assumption that the sample
size is directly related to the cost of query execution.
However, in P2P networks, the cost of query
execution is a combination of several quantities, e.g.,
the number of participating peers, the bandwidth
consumed (i.e., amount of data shipped over the
network), the number of messages exchanged, the
latency (the end-to-end time to propagate the query
across multiple peers and receive replies), the I/O
cost of accessing data from participating peers, the
CPU cost of processing data at participating peers,
and so on. In this paper, we shall be concerned with
several of these cost metrics.

Our Approach: We briefly describe the
framework of our approach. Essentially, we abandon
trying to pick true uniform random samples of the
tuples, as such samples are likely to be extremely
impractical to obtain. Instead, we consider an
approach where we are willing to work with skewed
samples, provided we can accurately estimate the
skew during the sampling process. To get the
accuracy in the query answer desired by the user, our
skewed samples can be larger than the size of a
corresponding uniform random sample that delivers

the same accuracy, however, our samples are much
more cost efficient to generate. Although we do not
advocate any significant preprocessing, we assume
that certain aspects of the P2P graph are known to all
peers, such as The average degree of the nodes, a
good estimate of the number of peers in the system,
certain topological characteristics of the graph
structure, and so on. Estimating these parameters via
preprocessing are interesting problems in their own
right, Our approach has two major phases. In the first
phase, we initiate a fixed-length random walk from
the sink. This random walk should be long enough to
ensure that the visited peers1 represent a close
sample from the underlying stationary distribution –
the appropriate length of such a walk is determined in
a pre-processing step. We then retrieve certain
information from the visited peers, such as the
number of tuples, the aggregate of tuples (e.g.,
SUM/COUNT/AVG, etc.) that satisfy the selection
condition, and send this information back to the sink.
This information is then analyzed at the sink to
determine the skewed nature of the data that is
distributed across the network - such as the variance
of the aggregates of the data at peers, the amount of
correlation between tuples that exists within the same
peers, the variance in the degrees of individual nodes
in the P2P graph and so on. Once this data has been
analyzed at the sink, an estimation is made on how
much more samples are required - and in what way
should these samples be collected - so that the
original query can be optimally answered within the
desired accuracy with high probability. For example,
the first phase may recommend that the best way to
answer this query is to visit m’ more peers, and from
each peer, randomly sample t tuples. We mention that
the first phase is not overly driven by heuristics –
instead it is based on strong underlying theoretical
principles, such as theory of random walks [14, 21,
4], as well as statistical techniques such as cluster
sampling, block-level sampling and cross validation
[9, 16]. The second phase is then straightforward – a
random walk is reinitiated and tuples collected
according to the recommendations made by the first
phase. Effectively, the first phase is used to “sniff”
the network and determine an optimal-cost “query
plan”, which is then implemented in the second
phase. For certain aggregates, such as COUNT and
SUM, further optimizations may be achieved by
pushing the selections and aggregations to the peers –
i.e., the local aggregates instead of raw samples are
returned to the sink, which are then composed into a
final answer.

[Ganwani, 2(5): May, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1367-1371]

The Peer-to-Peer Model
We assume an unstructured P2P network

represented as a graph G = (P, E), with a vertex set
P={p1, p2, ..., pM} and an edge set E. The vertices in
P represent the peers in the network and the edges in
E represent the connections between the vertices in P.
Each peer p is identified by the processor’s IP
address and a port number (IPp, portp). The peer p is
also characterized by the capabilities of the processor
on which it is located, including its CPU speed pcpu,
memory bandwidth pmem and disk space pdisk. The
node also has a limited amount of bandwidth to the
network, noted by pband. In unstructured P2P
networks, a node becomes a member of the network
by establishing a connection with at least one peer
currently in the network. Each node maintains a small
number of connections with its peers; the number of
connections is typically limited by the resources at
the peer. We denote the number of connections a peer
is maintaining by pconn. The peers in the network
use the Gnutella’s P2P protocol to communicate. The
Gnutella P2P protocol supports four message types
(Ping, Pong, Query, Query_Hit); of which the Ping
and Pong messages are used to establish connections
with other peers, and the Query and Query_Hit
messages are used to search in the P2P network.
Gnutella, however, uses a naïve Breadth First Search
(BFS) technique in which queries are propagated to
all the peers in the network, and thus consumes
excessive network and processing resources and
results in poor performance. Our approach, on the
other hand, uses a probabilistic search algorithm
based on random walks. The key idea is that, each
node forwards a query message, called walker,
randomly to one of its adjacent peers. This technique
is shown to improve the search efficiency and reduce
unnecessary traffic in the P2P network

Query Cost Measures

As mentioned in the introduction, the cost of
the execution of a query in P2P databases is more
complicated that equivalent cost measures in
traditional databases. The primary cost measure we
consider is latency, which is the end-to-end time to
propagate the query across multiple peers and receive
replies. For the purpose of illustration, we focus in
this section on the SUM and COUNT aggregates. For
these specific aggregates, latency can be
approximated by an even simpler measure: the
number of peers that participate in the algorithm.
This measure is appropriate for these aggregates
primarily because the overheads of visiting peers
dominate other incurred costs. Random Walk in
Graphs.

Random Walk in Graphs :
In seeking a random sample of the P2P

database, we have to overcome the sub-problem of
how to collect a random sample of the peers
themselves. Unrepresentative samples of peers can
quickly skew results producing erroneous
aggregation statistics. Sampling in a non-hierarchical
decentralized P2P network presents several obstacles
in obtaining near uniform random samples. This is
because no peer (including the query sink) knows the
IP addresses of all other peers in the network – they
are only aware of their immediate neighbors. If this
were not the case, clearly the sink could locally
generate a random subset of IP addresses from
among all the IP addresses, and visit the appropriate
peers directly. This problem has been recognized in
other contexts and interesting solutions based on
Markov chain random walks have been proposed. We
briefly review such approaches here. A Markov chain
random walk is a procedure that is initiated at the
sink, and for each visited peer, the next peer to visit
is selected with equal probability from among its
neighbors (and itself – thus self loops are allowed). It
is well known that, if this walk is carried out long
enough, the eventual probability of reaching any peer
p will reach a stationary distribution. To make this
more precise, let P = {p1, p2, …, pM} be the entire
set of peers, let E be the entire set of edges, and let
the degree of a peer p be deg(p). Then the probability
of any peer p in the stationary distribution is

Our Algorithm

In this section we present details of our two-
phase algorithm for approximating answering of
aggregate queries. For the sake of illustration, we
focus on approximating COUNT queries – it can be
easily extended to SUM queries. The pseudo code of
the algorithm is presented below.
Algorithm: COUNT queries
Predefined Values
M : Total number of peers in network
E : Total number of edges in network
m : Number of peers to visit in Phase I
j : Jump size for random walk
t : Max #tuples to be sub-sampled per peer
Inputs
Q : COUNT query with selection condition
Sink : Peer where query is initiated
req _ : Desired max error
Phase I
// Perform Random Walk
1. Curr = Sink; Hops = 1;
2. while (Hops < j * m) {

[Ganwani, 2(5): May, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1367-1371]

3. if (Hops % j)
4. Visit(Curr);
5. Hops++;
6. Curr = random adjacent peer
7. }
// Visit Peer
1. Visit(Curr) {
2. if (#tuples of Curr) <= t) {
3. Execute Q on all tuples
4. else
5. Execute Q on t randomly sampled
6. tuples
7. }
8.

10. Return (y(Curr), deg(Curr)) to Sink
11. }
// Cross-Validate at Sink
1. Let S = {s1, s2, …, sm} be the visited peers
2. Partition S randomly into two halves: S1 & S2
3. Compute

Where

1. Visit m’ peers using random walk
2. Let S’ = {s1, s2, …, sm’} be the visited peers
Our approach in the first phase is broken up into the
following main components. First, we perform a
random walk on the peer-to-peer network, attempting
to avoid skewing due to graph clustering and vertices
of high degree. Our walk skips j nodes between each
selection to reduce the dependency between
consecutive selected peers. As the jump size
increases, our method increases overall bandwidth
requirements within the database but for most cases
small jump sizes suffice for obtaining random
samples. Second, we compute aggregates of the data
at the peers and send these back to the sink. Note that
in the previous section, we had not formally
discussed the issue of sub-sampling at peers – this
was primarily done to keep the previous discussion

simple. In reality, the local databases at some peers
can be quite large, and aggregating them in their
entirety may not be negligible compared to the
overhead of visiting the peer – in other words, the
simplistic cost model of only counting the number of
visited peers is inappropriate. In such cases, it is
preferable to randomly sub-sample a small portion of
the local database, and apply the aggregation only to
this sub-sample. Thus, the ideal approach for this
problem is to develop a cost model that takes into
account cost of visiting peers as well as local
processing costs; and for such cost models, an ideal
two-phase algorithm should determine various
parameters in the first phase, such as how many peers
to visit in the second phase, and how many tuples to
sub-sample from each visited peer. In this paper we
taken a somewhat simpler approach, in which we fix
a constant t (determined at preprocessing time via
experiments), such that if a peer has at most t tuples,
its database is aggregated in its entirety, whereas if
the peer has more than t tuples, then t tuples are
randomly selected and aggregated. Sub-sampling can
be more efficient than scanning the entire local
database – e.g., by block-level sampling in which
only a small number of disk blocks are retrieved. If
the data in the disk blocks are highly correlated, it
will simply mean that the number of peers to be
visited will increase, as determined by our cross
validation approach at query time. Third, we estimate
the cross-validation error of the collected sample, and
use that to estimate the additional number of peers
that need to be visited in the second phase. For
improving robustness, steps 2-4 in the cross
validation procedure can be repeated a few times and
the average squared CVError computed. Once the
first phase has completed, the second phase is then
straightforward – we simply initiate a second random
walk based on the recommendations of the first
phase, and compute the final aggregate. Although the
algorithm has been presented for the case of COUNT,
it can be easily extended for SUM. Finally, we re-
emphasize that for more complex aggregates, such as
estimation of medians, quintiles, and distinct values,
more sophisticated algorithms are required.

Conclusion

In this paper we present adaptive sampling-
based techniques for the novel problem of
approximate answering of ad-hoc aggregation queries
in P2P databases. We present extensive experimental
evaluations to demonstrate the feasibility of our
solutions. Several intriguing open problems remain.
Is it possible to build hybrid solutions that do some
amount of pre-computations of samples, in addition
to “on-the-fly” sampling such as ours? Is it possible

[Ganwani, 2(5): May, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1367-1371]

for sampling-based algorithms to perform “biased
sampling”, i.e., focus the samples from regions of the
database where tuples that satisfy the query are likely
to exist? More generally, decision support and data
analysis in P2P databases appears to be an important
area of research with emerging applications, and we
hope our work will encourage further research in this
field.

References

[1] S. Acharya, P. B. Gibbons and V. Poosala.
Aqua: A Fast Decision Support System
Using Approximate Query Answers. Demo
in Intl. Conf. on Very Large Databases
(VLDB '99).

[2] L. Adamic, R. Lukose, A. Puniyani, and B.
Huberman. Search in Power-Law Networks.
Phys. Rev. E, 2001.

[3] B. Babcock, S. Chaudhuri, and G. Das.
Dynamic Sample Selection for Approximate
Query Processing. SIGMOD Conference
2003: 539-550.

[4] A.R. Bharambe, M. Agrawal, and S. Seshan.
Mercury:Supporting Scalable Multi-
Attribute Range Queries. SIGCOMM 2004.

[5] M. Charikar, S. Chaudhuri, R. Motwani, and
V. Narasayya. Towards estimation error
guarantees for distinct values. In
Proceedings of the ACM Symp. On
Principles of Database Systems, 2000.

[6] S. Chaudhuri, G. Das, M. Datar, R.
Motwani, and V. Narasayya. Overcoming
Limitations of Sampling for Aggregation
Queries. ICDE 2001: 534-542.

[7] S. Chaudhuri, R. Motwani, and V.
Narasayya. Random sampling for histogram
construction: How much is enough? IN
Proceedings. Of the 1998 ACM SIGMOD
Intl. Conf. on Management of Data, pages
436-447, 1998.

[8] S. Chaudhuri, G. Das, and V. Narasayya. A
Robust, Optimization-Based Approach for
Approximate Answering of Aggregate
Queries. SIGMOD Conference 2001.

[9] S. Chaudhuri, G. Das, and U. Srivastava.
Effective Use of Block-Level Sampling in
Statistics Estimation. SIGMOD 2004.

[10] Y. Chu, S. Rao, and H. Zhang. A case for
end system multicast. In Proceedings of
ACM Sigmetrics 2000.

[11] Mauricio Minuto Espil and Alejandro A.
Vaisman. Aggregate queries in peer-to-peer
OLAP. DOLAP '04.

[12] C. Faloutsos, P. Faloutsos, and M.
Faloutsos. On Power- Law Relationships of
the Internet Topology. SIGCOMM 1999.

[13] Freenet Homepage,
http://freenet.sourceforge.net

[14] C. Gkantsidis, M. Mihail, and A. Saberi.
Random Walks in Peer-to-Peer Networks.
IEEE Infocom 2004.

[15] Gnutella Homepage, http://rfc-gnutella.
sourceforge.net.

[16] P. Haas, and C. K[nig. A Bi-Level Bernoulli
Scheme for Database Sampling. SIGMOD
2004.

[17] R. Heubsch, J. Hellerstein, N. Lanhan, B. T.
Loo, S.Shenker, and I. Stoica. Querying the
Internet with PIER. VLDB 2003.

[18] JUNG website. http://jung.sourceforge.net.
[19] P. Kalnis, W. S. Ng, B. C. Ooi and D.

Papadias and K-L.Tan. An adaptive peer-to-
peer network for distributed caching of
OLAP results. SIGMOD 2002.

[20] KaZaA Homepage, http://www.kazaa.com.
[21] V. King and J. Saia. Choosing a Random

Peer. PODC 2004.
[22] F. Le Fessant, S. Handurukande, A.-M.

Kermarrec, and L.Massoulié. Clustering in
Peer-to-Peer File Sharing Workloads. 3rd
Intl. Workshop on Peer-to-Peer Systems
IPTPS 2004.

[23] X. Li, Y.J. Kim, R. Govindan, and W. Hong.
Multidimensional range queries in sensor
networks. SENSYS 2003.

[24] D. Milojicic, V. Kalogeraki, R. Lukose, K.
Nagaraja, J.Pruyne, B. Richard, S. Rollins,
and Z. Xu. Peer-to-Peer Computing. HP
Technical Report, HPL-2002-57.

[25] Napster Hompage, http://www.napster.com.
[26] S. Ratnasamy, P. Francis, M. Handley, R.

Karp, and S.Shenker. A Scalable Content-
Addressable Network. SIGCOMM 2001.

[27] A. Rowstron and P. Druschel. Pastry:
Scalable,distributed object location and
routing for large-scale peer-topeer systems.
IFIP/ACM Middleware 2001.

